AN EMPIRICAL STUDY OF THE UGSORT ALGORITHM

AN EMPIRICAL ANALYSIS OF THE UGSORT ALGORITHM
Tree, lan J.

unaffiliated researcher

Author Note
lan J. Tree, unaffiliated researcher
Eindhoven, the Netherlands

Email: ian.tree@acm.org

Empirical Study of the UGSort Algorithm 2

Abstract
This paper provides the results of an empirical study of the performance envelope of a sample
implementation of the UGSort merge sort algorithm.

Keywords: empirical, performance, UGSort, sort, merge

Revised 12/09/2023 for v1.15 of the application using binary search.

Empirical Study of the UGSort Algorithm 3

An Empirical Study of the Performance of the UGSort Algorithm'

This paper details an empirical study of the performance characteristics of a sample
implementation of the UGSort merge sort algorithm. Different aspects of the performance
profile of the algorithm are investigated using a common set of testing methodologies.

Testing Methods and Materials
The UGSort Application

The UGSort application is a testbed for an implementation of the UGSort merge sort
algorithm. The application will sort text files (CRLF or LF terminated records) based on a
fixed length ascii key at a given offset in each record in the unsorted file. Sorted output will
be written to a designated output file. The implementation is minimally optimised providing
indicative timing for any implementation of the algorithm. The application is minimally
instrumented to provide the ability to perform timing comparisons for different scenarios.

The application is a practical implementation of the UGSort algorithm rather than a
simplified sort kernel implementation that would be used to explore the theoretical time
complexity of the algorithm.

All tests were conducted with UGSort v1.15.0.

Testing Protocol

All tests are performed using a common protocol. An individual test configuration is
run ten times in succession the run time of each test is recorded using Measure-Command on
Windows and the time command on Linux. The slowest three run time results are discarded
and the average of each measure for the remaining seven runs are used as the results.

Data collection and collation was performed in Microsoft Excel™., All curve fitting,

analysis and charting was done using SciDAVis v2.7.

Empirical Study of the UGSort Algorithm

Testing Configurations
Windows.
A dedicated laptop for development, testing and simulations.
Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz
Installed RAM32.0 GB (31.9 GB usable)
System type 64-bit operating system, x64-based processor
Edition Windows 11 Home
Version 22H2
OS build 22621.1992
Disk 1,000 GB SSD
Microsoft Visual Studio Community 2022
Version 17.6.5
Visual Studio. 17.Release/17.6.5+33829.357
Compilation: /02 /W4
Linux.
A development and testing virtual server.
Os: CentOS Linux 7 (Core)
Kernel:3.10.0-1160.76.1.el7.x86_64 #1 SMP
CPU(s): 4
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 4
CPU MHz: 2350.000
BogoMIPS: 4700.00

L1d cache: 32K

Empirical Study of the UGSort Algorithm

L1i cache: 32K

L2 cache: 512K

L3 cache: 16384K

Memory: 7820

gcc version: 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC)

cmake version 2.8.12.2

Compilation: -std=c++11 -02 -Wall
Test Data

Testing uses files that have been prepared for individual studies. The default test set
comprises files of text records with a randomly generated 20 numeric character key at the
start of each record, padded with random and serial data to an average record length of 61
bytes, the files contain 250,000 to 5,000,000 records at 250,000 intervals.

Best-case test files are created from the random test files by sorting them on the test
key into descending sequence. Worst-case test datasets are prepared by taking the

corresponding best-case file and emitting it in alternating tail and top sequence.

STUDIES
All timing measurements (t) are given in milliseconds (ms) unless explicitly stated.
Key counts (n) are given in millions of keys. The following sections describe each of the
common timings that may be recorded in results tables.
1. T_LD — The time taken to load the test data into memory.
2. T_SI—The time taken to complete the partitioning of the input data into the array of
double ended queues. This time excludes any time spent performing pre-emptive
merges.

3. T_PM — The time taken performing pre-emptive merges during the sort input phase.

Empirical Study of the UGSort Algorithm

&

CSI — The cumulative time spent in the sort input phase i.e., T_SI+ T_PM.

o

T_FM — the time spent in performing the final merge, resulting in the keys being in a

single double ended queue.

o

CM — The cumulative merge timei.e., T PM + T_FM.

~

T_SO — The time spent iterating the result queue and building the output buffer with
the input data in the desired sequence.

8. T_SD - The time spent writing the output buffer to disk.

9. T_S - The total sort time excluding loading the input data and storing the output data.
10. RT — The total runtime of the test application, this is measured external to the

application.

Figure 1. Timing Diagram

'y
T.D Load input data
L2 I
A ¥ A
T SI+T_PM Input data to sort ¢—>| Pre-emptive merge
— W I
A ¥
T_FM Merge T_SORT
r ¥
T so Prepare output
i~ v
T 5D Store output
L2

All tests are performed using the in-memory (fastest) mode of operation.

Empirical Study of the UGSort Algorithm 7
1. 64bit (x64) vs. 32bit (x86)
This study will compare the performance of 64-bit and 32-bit applications using a
5,000,000 random test dataset.
Windows Results.
Table 1. x64 vs x86 timing comparison on Widows
Arch T_LD TSI T_PM Csl TFM TSO T.SD TS RT
x64 59.0 1076.4 235.6 13120 1884.0 258.6 222.0 34584 3794
x86 58.3 942.6 2349 1177.4 17103 357.7 222.6 3250.4 3591
Linux Results.
Table 2. x64 vs x86 timing comparison on Linux
Arch T_LD TSI T_PM Csl TFM TSO T.SD TS RT
x64 82.0 21049 4357 25406 3707.6 857.6 105.7 7107.0 7353
x86 86.7 2256.7 4153 2672.0 3570.0 928.6 99.1 7171.9 7416

Observations and Analysis

As expected, the Linux timings are much slower than the Windows timings as the test

platform for Linux is less powerful than the Windows test platform. Subsequent studies will

use the x64 (64 bit) test application.

Empirical Study of the UGSort Algorithm 8

2. Random Keys
This study will examine the relationship between the number of keys sorted (n) and
the sort time. Tests will examine the performance on a range of random input files from
250,000 keys up to 5,000,000 keys in 250,000 increments. The release x64 build v1.15.0 of
the UGSort application is used for all tests.
Windows Results.

Table 3. timing comparisons for different n on Windows

n(M) TLD TSI TPM csl TFM TSO T.SD TS RT
0.25 3.0 32.9 4.0 36.9 57.4 9.4 4.0 110.4 138
0.50 5 70.3 10.9 81.1 135.1 21.6 14.6 244 .3 287
0.75 80 1084 257 1341 2129 34.7 32.1 389.0 454
1.00 11.0 150.4 53.4 203.9 277.0 47.0 43.1 536.1 617
125 143 2036 600 263.6 386.7 60.6 52.7 716.1 811
150 171 2517 557 307.4 497.9 74.4 66.7 888.0 1002
175 201 3016 624 3640 5973 87.7 75.6 1057.1 1185
200 229 3451 1050 450.1 638.9 99.9 87.6 1195.0 1339
225 260 4073 1213 5286 7749 1144 98.4 1426.6 1587
250 290 4616 1267 5883 8711 1273 1130 1593.0 1773
275 320 5157 1219 637.6 9817 1379 1223 1764.3 1958
3.00 34.1 573.7 107.4 681.1 1086.1 151.9 134.4 1927.1 2137
325 379 633.1 1289 7620 11876 1677 1480 2124.3 2355
350 413 707.3 2400 947.3 11724 1816 160.9 2310.3 2557
375 449 7687 133.6 9023 13990 1931 1716 2501.0 2764
400 463 8186 2223 10409 14563 2059 180.7 2709.4 2984
425 511 901.0 2281 1129.1 16369 2360 186.1 3010.7 3294
450 531 989.0 2434 12324 17556 2451 200.0 3240.9 3543
475 553 10157 2631 12789 17581 2409 213.7 3285.6 3606

5.00 56.7 1063.7 231.7 1295.4 1882.4 255.1 222.1 3440.4 3772

Empirical Study of the UGSort Algorithm 9
Linux Results.
Table 4. timing comparisons for different n on Linux
n(My T.LD TSI T_PM Csl TFM T.SO T.SD TS RT
0.25 4.0 63.4 8.3 71.7 106.0 31.6 5.1 210.6 227
0.50 9.0 135.7 18.1 153.9 234.3 66.3 10.3 455.4 484
0.75 12.3 212.0 403 252.3 364.1 100.3 15.4 717.6 757
1.00 12.7 301.3 89.4 390.7 509.0 1379 204 1039.0 1087
1.25 18.4 386.1 99.9 486.0 683.9 1781 254 1349.1 1409
1.50 20.6 469.0 92.6 561.6 846.6 2117 294 16209 1687
1.75 24.7 565.7 105.1 670.9 1030.1 2496 341 1951.7 2028
2.00 23.9 657.4 181.0 838.4 11184 2844 377 22426 2323
2.25 29.1 753.1 203.9 957.0 13473 329.6 441 26347 2729
2.50 321 854.1 2134 1067.6 15039 3620 479 29347 3039
2.75 37.6 961.0 215.4 11764 17337 410.0 540 33214 3438
3.00 33.6 1071.7 1846 12563 1865.1 4436 56.6 3566.3 3685
3.25 38.3 1190.4 2149 14053 20223 4704 629 3899.3 4030
3.50 45.9 1316.4 403.4 17199 2047.0 5286 723 4301.4 4452
3.75 47.7 1462.1 2240 1686.1 24244 5654 73.7 4676.9 4834
4.00 47.7 1532.9 3749 1907.7 25544 6016 783 5064.9 5230
4.25 61.4 1654.6 368.6 2023.1 2667.9 6403 851 5335.4 5526
4.50 61.0 1778.1 399.4 21776 2919.6 680.3 89.6 5778.7 5976
4.75 68.3 1898.4 4410 23394 30244 7111 934 6076.1 6286
5.00 63.4 2051.4 3927 24441 32309 7456 976 64217 6635

Empirical Study of the UGSort Algorithm 10

Observations and Analysis

A linear regression on the sort time (t) in milliseconds gave the following
relationships with n as the number of millions of input keys.

t=mn+c

Where m is the slope and c the intercept.

For Windows m = 726 and ¢ = -183, with R? = 0.9991.

For Linux m = 1,328 and ¢ = -307, with R? = 0.9995.

The approximate throughput rates for Windows and Linux were respectively
1,500,000 and 800,000 keys per second.

Figure 2. best fit plots for t vs. n on Windows

Windows: Random Keys t vs. n

—+— Observed Time vs. n

- | = Linear Best Fit)
. Boltzmann Sigmoidal
3,000 —|

— -
E
2 2,000 —
£ .
[-
+ .
=]
2 i

1,000 —

. L

n—t//

| T T T T I T T T T | T T T T | T T T T | T T T T | T T T T |
0 1 2 3 4 5]
Number of Keys (M)

Empirical Study of the UGSort Algorithm 11

Figure 3. best fit plots for t vs. n on Linux

Linux: Random Keys t vs. n
7,000

1 | =+ Observed Time vs. n }
6,000 - | — Linear Best Fit
] Boltzmann Sigmoidal /

&
=1
=]
=
l

Sort Time (ms)
L
=]
=
=
|11

u_l L I L | L | L | L | L |

0 1 2 3 4 5]
Number of Keys (M)

The plots show a typical logarithmic or sigmoidal deviation from the linear
approximation. Sort algorithms based on merge typically show time complexity of nLogz(n),
therefore a best match was attempted on that basis, no match was possible.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((te-tz)/(1+eNOVA)) 4 ¢,

Where t1 is the initial value of t, t> the final value, no is the mid-value of n and
dn is the time constant.

For Windows t1 = -1,760, t2 = 6,750, no = 3.69 and dn = 2.72
matches with R? = 0.9996.

For Linux ty = -4,734, t2 = 15,200, np = 4.2 and dn = 3.5

matches with R? = 0.9999.

For both Windows and Linux, the linear estimations for the sort time are as

accurate as needed for run time estimations over the range being studied.

Empirical Study of the UGSort Algorithm 12

3. Best-Case
This study will examine the performance profile for "best-case” sample data. The data
is constructed by pre-sorting the random samples into descending sequence. The release x64
build v1.15.0 of the UGSort application is used for all tests.
Windows Results.

Table 5. timing comparisons for different n on Windows

n(M) TLD TSI TPM csl TFM TSO T.SD TS RT
0.25 23 5.0 0.0 5.0 0.0 3.1 4.0 11.9 4
0.50 5 13.4 0.0 13.4 0.0 7.0 14.7 26.3 69
0.75 8.0 24.1 0.0 24.1 0.0 11.0 25.4 42.4 100
1.00 110 39.3 0.0 39.3 0.0 14.1 36.9 60.6 135
125 143 59.1 0.0 59.1 0.0 18.9 49.1 85.0 177
150 170 78.1 0.0 78.1 0.0 22.0 60.3 106.4 213
175 200 103.4 00 103.4 0.0 253 71.6 136.7 259
200 230 1336 00 133.6 0.0 29.9 81.3 171.0 307
225 261 165.9 00 1659 0.0 33.6 95.4 203.9 360
250 290 203.0 00 203.0 0.0 376 106.9 243.7 419
275 320 2330 00 2330 0.0 410 117.0 278.7 467
3.00 346 2783 00 2783 0.0 453 127.3 330.4 533
325 379 3244 00 3244 0.0 479 1417 375.1 597
350 406 376.4 00 3764 0.0 520 153.4 4326 670
375 439 4313 00 4313 0.0 59.1 169.1 4943 752
400 457 4921 00 4921 0.0 58.6 177.7 555.6 826
425 499 5486 00 5486 0.0 629 186.7 607.7 895
450 524 6083 00 608.3 0.0 63.1 199.9 679.4 983
475 547 6757 00 6757 0.0 717 2196 753.3 1082

5.00 57.4 753.6 0.0 753.6 0.0 82.3 224.1 842.7 1178

Empirical Study of the UGSort Algorithm 13
Linux Results
Table 6. timing comparisons for different n on Linux
n(My T_LD TSI T_PM Csl TFM TSSO T.SD TS RT
0.25 3.3 7.1 0.0 7.1 0.0 6.0 4.7 14.0 28
0.50 6.9 15.6 0.0 15.6 0.0 114 103 27.6 53
0.75 9.6 25.1 0.0 25.1 0.0 160 147 42.0 76
1.00 12.1 37.4 0.0 37.4 0.0 210 194 59.1 102
1.25 15.6 50.0 0.0 50.0 0.0 29.1 249 79.6 134
1.50 17.4 60.9 0.0 60.9 0.0 357 29.4 97.4 159
1.75 20.4 75.6 0.0 75.6 0.0 421 344 118.4 189
2.00 22.4 92.6 0.0 92.6 0.0 48.7 387 141.9 222
2.25 26.0 110.4 0.0 110.4 0.0 53.7 447 164.7 257
2.50 30.6 126.7 0.0 126.7 0.0 59.3 49.7 186.7 289
2.75 33.0 145.1 0.0 145.1 0.0 69.9 54.1 215.3 329
3.00 36.6 167.7 0.0 167.7 0.0 80.6 57.7 248.9 373
3.25 41.0 190.9 0.0 190.9 0.0 91.6 64.9 282.9 424
3.50 45.1 216.1 0.0 216.1 0.0 1033 699 320.0 475
3.75 50.6 236.1 0.0 236.1 00 1134 733 350.1 515
4.00 51.7 267.1 0.0 267.1 0.0 1216 763 389.4 561
4.25 56.4 291.3 0.0 291.3 0.0 1346 83.0 426.7 615
4.50 59.6 313.6 0.0 313.6 0.0 1416 897 455.9 652
4.75 59.0 347.6 0.0 347.6 0.0 1461 93.0 494.3 696
5.00 59.9 381.9 0.0 381.9 0.0 1539 959 536.6 744

Empirical Study of the UGSort Algorithm 14

Observations and Analysis

The first observation is that despite running on the less powerful platform the Linux
tests bettered the Windows tests for all values of n. The best-case data sets do not require any
merging as the data is pre-sorted and therefore is loaded to only a single partition, thus,
T PMand T_FM are 0 in all tests.

A linear regression on the sort time (t) in milliseconds gave the following
relationships with n as the number of millions of input keys.

t=mn+c

Where m is the slope and c the intercept.

For Windows m = 171 and ¢ = -128, with R? = 0.983.

For Linux m = 111 and ¢ = -59, with R? = 0.993.

The approximate throughput rates for Windows and Linux were respectively

6,000,000 and 9,000,000 keys per second.

Figure 4. best fit plots for t vs. n on Windows
Windows: Best Case tvs. n

1,000 —
4 | =—— oObservedtvs.n
1 Linear Best At F 2
800 — nLogan Best Fit

_ Boltzmann Sigmoidal /

Sort Time (ms)

'2':”]_|||||||||||||||||||||||||||||||

0 1 2 3 4 5 &
MNumber of Keys (M)

Empirical Study of the UGSort Algorithm 15

Figure 5. best fit plots for t vs. n on Linux

Linux: Best Case t vs. n
600 —

]| —— Observedtvs.n -
500 __ Linear Best Ft -
] nLogzn Best Fit ”,
— Boltzmann Sigmoidal ’
400 P
- _
2 _
E 3003
o _
E]
[-
~ 200
= _
n _
100 —
] e e
0 "*/,
_1[”] _l I I I I | I I I I I I I I I | I I I I | I I I I | I I I I |
0 1 2 3 4 5]

Number of Keys (M)

The plots show a typical logarithmic or sigmoidal deviation from the linear approximation.
Sort algorithms based on merge typically show time complexity of nLogz(n), therefore a best
match is done on that basis.

t = mnLog(kn)

Where m is the scale and k a constant.

For Windows m = 54 and k = 1.5, with R? = 0.9965.

For Linux m = 24.6 and k = 3.8, with R = 0.9989.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((ta-t2)/(1+e(0VAMyy 4 t,

Where ty is the initial value of t, t> the final value, no is the mid-value of n and
dn is the time constant.

For Windows t; = -118, t, = 2,628, no = 6.26 and dn = 2.0

Empirical Study of the UGSort Algorithm

matches with R? = 0.9999.
For Linux t; =-88,t2=1,044, no=4.6and dn=1.9
matches with R? = 0.9999.
For both Windows and Linux, the linear estimations for the sort time are as

accurate as needed for run time estimations over the range being studied.

16

Empirical Study of the UGSort Algorithm

4, Worst-Case

17

This study will examine the performance profile for "worst-case” sample data. Worst-

case test datasets are prepared by taking the corresponding best-case file and emitting it in

alternating tail and top sequence. The release x64 build v1.15.0 of the UGSort application is

used for all tests.

Windows Results.

Table 5. timing comparisons for different n on Windows

n(My T.LD TSI T _PM csl TFM TSO TSD TS RT
0.25 23 372.6 90.4 463.0 10.0 3.0 40 4836 511
0.50 5 573.1 526.9 1100.0 239 73 149 11404 1184
0.75 8.0 7457 11656 1911.3 35.1 120 276 19623 2023
1.00 11.0 8913 19339 28251 51.0 157 389 28989 2976
1.25 141 10401 2893.0 3933.1 844 19.6 49.7 40444 4137
1.50 171 11547 3921.0 5075.7 88.0 266 619 51960 5306
1.75 200 12511 5082.1 6333.3 817 276 721 64489 6573
2.00 230 13907 6223.3 76140 1029 31.6 829 77564 7897
2.25 260 14861 75704 9056.6 131.1 361 1001 92297 9393
2.50 369 16171 8929.0 105461 129.7 430 1133 107259 10914
2.75 403 17000 10381.0 12081.0 1434 444 1240 122763 12482
3.00 350 18119 118257 13637.6 164.7 52.7 1353 13863.0 14075
3.25 394 19147 134656 153803 181.1 556 149.9 156263 15859
3.50 411 2009.6 150824 17092.0 217.9 61.7 1683 17380.7 17635
3.75 440 2082.6 168904 18973.0 213.4 647 1773 192584 19529
4.00 464 21827 185214 207041 2314 63.4 1919 21008.1 21296
4.25 490 22844 20409.0 226934 251.0 684 2074 23019.9 23324
4.50 521 2391.1 22350.1 247413 3043 79.1 2134 25133.7 25449
4.75 70.9 24723 243649 26837.1 303.4 840 2250 272339 27581
5.00 570 2547.3 259686 285159 287.4 79.6 2283 288909 29230

Empirical Study of the UGSort Algorithm 18
Linux Results.
Table 6. timing comparisons for different n on Linux
n(My T.LD T_SI T_PM Csl TFM TSSO T.SD TS RT
0.25 4.0 309.3 397.0 706.3 23.4 6.9 5.1 737.4 754
0.50 7.9 521.0 1296.4 1817.4 457 123 101 1876.6 1903
0.75 11.3 711.4 2351.0 3062.4 621 181 149 3143.9 3180
1.00 14.9 870.1 3617.9 4488.0 871 229 199 4598.7 4645
1.25 18.1 1041.3 5153.7 61950 1100 319 26.0 6338.0 6395
1.50 18.4 1180.7 6709.3 7890.0 1296 384 304 8059.1 8123
1.75 20.1 1325.1 8730.1 10055.3 139.0 449 350 10240.6 10312
2.00 276 1450.1 101389 11589.0 1689 53.0 387 118123 11896
2.25 28.9 1588.7 124369 140256 189.6 56.4 46.4 142727 14369
2.50 34.9 1739.0 14503.0 162420 2103 743 506 16527.6 16638
2.75 38.1 1863.4 168020 18665.4 227.7 924 556 18986.7 19107
3.00 42.9 19859 18785.0 207709 2439 1114 591 211274 21258
3.25 434 2090.9 21168.6 23259.4 266.0 120.9 64.6 23647.6 23788
3.50 46.0 22373 23993.0 262303 3347 1347 707 267009 26852
3.75 521 23619 27373.3 297351 3964 1453 73.7 302780 30444
4.00 473 2463.6 290023 314659 3374 1571 783 319619 32127
4.25 586 2577.3 31882.0 344593 3949 1683 880 350234 35216
4.50 67.4 26867 34733.0 37419.7 4131 1721 971 38006.1 38216
4.75 71.0 2821.7 37768.4 40590.1 407.7 189.9 100.4 41189.1 41414
5.00 813 2933.6 398856 42819.1 417.7 1920 98.6 43430.0 43658

Observations and Analysis

A linear regression on the sort time (t) in milliseconds gave the following

relationships with n as the number of millions of input keys.

and 150,000 keys per second.

t=mn+c

Where m is the slope and c the intercept.

For Windows m = 6,126 and ¢ = -3,402, with R? = 0.995.

For Linux m = 9,255 and ¢ = -4,896, with R2 = 0.9957.

The approximate throughput rates for Windows and Linux were respectively 250,000

Empirical Study of the UGSort Algorithm

Figure 6. best fit plots for t vs. n on Windows

Windows: Worst Case tvs. n

30,000 —
1 | —+— O0Observed Sort Time
25:,3,3,;]_' = Linear Best Fit
] | = nlLogz{n) Best Fit
. Boltzmann Sigmoidal
20,000
- ’
£ 15,000 3
) _
E]
[
% 10,000
@ _
5,000 —
0
'5:uuu_||||||||||||||||||||||||||
] 1 2 3 4 5
Number of Keys (M)

Figure 7. best fit plots for t vs. n on Linux

Linux: Worst Casetvs. n

50,000 —

1 | —— Observed tvs. n

- = Linear Best At
40,000 — nLogzn Best Fit

] Boltzmann Sigmoidal
30,000 —

Sort Time (ms)
=]
=
=
=
[=]
1

Number of Keys (M)

Empirical Study of the UGSort Algorithm 20

The plots show a typical logarithmic or sigmoidal deviation from the linear
approximation. Sort algorithms based on merge typically show time complexity of nLogz(n),
therefore a best match is done on that basis.

t = mnLog(kn)

Where m is the scale and k a constant.

For Windows m = 1,351 and k = 3.8, with R? = 0.9996.

For Linux m = 1,931 and k = 4.5, with R2 = 0.9996.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((to-tz)/(1+eNOVA)) 4,

Where t1 is the initial value of t, t> the final value, no is the mid-value of n and
dn is the time constant.

For Windows t1 = -7,179, t> = 60,347, no = 4.69 and dn = 2.14
matches with R? = 0.9999.

For Linux t; = -9,804, t> = 80,014, no = 4.24 and dn = 1.97

matches with R2 = 0.9998.

Empirical Study of the UGSort Algorithm 21

5. Comparison with native OS Sort Utilities

This study compares the run time (RT) of different test sets (random, best-case and
worst-case) of UGSort with the Sort utility provided with the OS. In each case the tests are
run for the complete range of n (250,000 to 5,000,000) keys. Run times for the Sort utilities
are measured using the time command on Linux and the Measure-Command PowerShell
command on Windows.

Linux:> time sort input file >output file

Windows:> Measure-Command {sort.exe input file /O output file}

Windows Results.

Table 7. timing comparisons for different n on Windows

n (M) Sort UGSort Sort UGSort Sort UGSort
Rand Rand Best Best Worst Worst
0.25 481 138 325 41 394 511
0.50 1061 287 665 69 868 1184
0.75 1696 454 994 100 1310 2023
1.00 2357 617 1374 135 1882 2976
1.25 3069 811 1737 177 2324 4137
1.50 3773 1002 2086 213 2994 5306
1.75 4581 1185 2489 259 3406 6573
2.00 5200 1339 2878 307 4078 7897
2.25 6162 1587 3310 360 4525 9393
2.50 6956 1773 3617 419 5160 10914
2.75 7566 1958 3931 467 5570 12482
3.00 8267 2137 4329 533 6322 14075
3.25 9086 2355 4729 597 6675 15859
3.50 9986 2557 5129 670 7474 17635
3.75 10581 2764 5541 752 7646 19529
4.00 11264 2984 5962 826 8671 21296
4.25 12374 3294 6415 895 8865 23324
4.50 13069 3543 6827 983 9729 25449
4.75 13893 3606 7249 1082 10016 27581

5.00 14784 3772 7488 1178 10898 29230

Empirical Study of the UGSort Algorithm 22
Linux Results.
Table 8. timing comparisons for different n on Linux
n (M) Sort UGSort Sort UGSort Sort UGSort
Rand Rand Best Best Worst Worst
0.25 468 227 239 28 298 754
0.50 685 484 304 53 371 1903
0.75 1072 757 467 76 570 3180
1.00 1457 1087 624 102 750 4645
1.25 1876 1409 803 134 959 6395
1.50 2356 1687 1024 159 1229 8123
1.75 2839 2028 1238 189 1456 10312
2.00 3304 2323 1435 222 1753 11896
2.25 3797 2729 1685 257 2011 14369
2.50 4239 3039 1871 289 2202 16638
2.75 4732 3438 2148 329 2465 19107
3.00 5144 3685 2325 373 2738 21258
3.25 5619 4030 2535 424 2983 23788
3.50 6111 4452 2730 475 3234 26852
3.75 6636 4834 2907 515 3451 30444
4.00 7207 5230 3218 561 3763 32127
4.25 7519 5526 3383 615 3963 35216
4.50 8211 5976 3560 652 4269 38216
4.75 8484 6286 3850 696 4516 41414
5.00 9261 6635 4055 744 4697 43658

Empirical Study of the UGSort Algorithm

Observations and Analysis

Figure 8. comparison plots for random key sequence

Random Key Sequence t vs. n

16,000
J | —— windows Sort
14,000 B & Windows UGSort
- * Linwx Sort
12,000 | —%— Linux UGSort

Sort Runtme (ms)
=
=
=
=
L1

6,000 —}
4,000 -
2,000
0]
‘2:':":":'_|||||||||||||||||||||||||||||||
0 1 2 3 4 5 &
Number of Keys (M)

UGSort performed well on both Windows and Linux, outperforming the
native Sort utilities by a significant margin.

Figure 9. comparison plots for best-case key sequence

Best Case Sequence tvs. n
8,000 o

7,000 Windows UGSort

Linux Sort
Linux UGSort

—8— Windows Sort
=
*

6,000

;

5,000
4,000

3,000

Sort Runtime (ms)

2,000

1,000

=

-1,000 2

Number of Keys (M)

23

Empirical Study of the UGSort Algorithm 24

The UGSort implementations on both Windows and Linux outperformed the
native Sort utilities. The algorithm is well suited to exploiting the presortedness"
which is at a maximum in the best-case key sequence.

Figure 10. comparison plots for worst-case key sequence

Worst Case Sequence tvs. n
50,000 —

—8— Windows Sort
#— Windows UG5ort
Linux Sort
Linux UGSort

Sort Runtme (ms)

| T T T T | T T T T | T T T T | T T T T | T T T T | T T T T |
0 1 2 3 4 5]
Number of Keys (M)

UGSort on both Linux and Windows performed poorly on this sequence,
which is not surprising as the sequence was designed to be highly toxic for the
UGSort algorithm. The Sort utility on both platforms performed better than against
the random key sequence runs, they can exploit the presortedness that is inherent in

the worst-case key sequence.

Empirical Study of the UGSort Algorithm 25

CONCLUSION

The UGSort application performed well on both platforms, giving a near linear
performance curve for random key sequences. Given that the application under test is
only minimally optimised the performance is encouraging although, the Linux
implementation did not perform as well as the Windows one. The performance on
both platforms was outstanding for the best-case test sets, performing far better than
the native Sort utilities. As expected, the worst-case test sets managed to significantly
impair the performance of UGSort in comparison to the native Sort utilities.

The UGSort algorithm offers a predictable and acceptable performance cost
over the range that was studied (250,000 to 5,000,000 keys).

The implementation of the binary search for partition selection has
significantly improved the algorithm, reducing sort input times and the number of pre-

emptive merges that are needed to maintain the performance.

FURTHER WORK

A theoretical study of the UGSort algorithm would underpin this study. The observed
O(n) time complexity observed in the random key sequence tests should be explained. Such a
study should resolve a relationship between sorting times and the degree of presortedness or

sequence spoiling noted in the best and worst-case test sets.

REFERENCES

 The UGSort Algorithm, Tree lan. J, 2023
https://github.com/UGSort-/docs/UGS-Algorithm.pdf
ii Sorting Presorted Files, Mehlhorn K, 1978

