
AN EMPIRICAL STUDY OF THE UGSORT ALGORITHM 1

AN EMPIRICAL ANALYSIS OF THE UGSORT ALGORITHM

Tree, Ian J.

unaffiliated researcher

Author Note

Ian J. Tree, unaffiliated researcher

Eindhoven, the Netherlands

Email: ian.tree@acm.org

Empirical Study of the UGSort Algorithm 2

Abstract

This paper provides the results of an empirical study of the performance envelope of a sample

implementation of the UGSort merge sort algorithm.

Keywords: empirical, performance, UGSort, sort, merge

Revised 12/09/2023 for v1.15 of the application using binary search.

Empirical Study of the UGSort Algorithm 3

An Empirical Study of the Performance of the UGSort Algorithmi

This paper details an empirical study of the performance characteristics of a sample

implementation of the UGSort merge sort algorithm. Different aspects of the performance

profile of the algorithm are investigated using a common set of testing methodologies.

Testing Methods and Materials

The UGSort Application

The UGSort application is a testbed for an implementation of the UGSort merge sort

algorithm. The application will sort text files (CRLF or LF terminated records) based on a

fixed length ascii key at a given offset in each record in the unsorted file. Sorted output will

be written to a designated output file. The implementation is minimally optimised providing

indicative timing for any implementation of the algorithm. The application is minimally

instrumented to provide the ability to perform timing comparisons for different scenarios.

The application is a practical implementation of the UGSort algorithm rather than a

simplified sort kernel implementation that would be used to explore the theoretical time

complexity of the algorithm.

All tests were conducted with UGSort v1.15.0.

Testing Protocol

All tests are performed using a common protocol. An individual test configuration is

run ten times in succession the run time of each test is recorded using Measure-Command on

Windows and the time command on Linux. The slowest three run time results are discarded

and the average of each measure for the remaining seven runs are used as the results.

Data collection and collation was performed in Microsoft Excel™. All curve fitting,

analysis and charting was done using SciDAVis v2.7.

Empirical Study of the UGSort Algorithm 4

Testing Configurations

Windows.

A dedicated laptop for development, testing and simulations.

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Installed RAM 32.0 GB (31.9 GB usable)

System type 64-bit operating system, x64-based processor

Edition Windows 11 Home

Version 22H2

OS build 22621.1992

Disk 1,000 GB SSD

Microsoft Visual Studio Community 2022

Version 17.6.5

Visual Studio. 17.Release/17.6.5+33829.357

Compilation: /O2 /W4

Linux.

A development and testing virtual server.

OS: CentOS Linux 7 (Core)

Kernel:3.10.0-1160.76.1.el7.x86_64 #1 SMP

CPU(s): 4

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 4

CPU MHz: 2350.000

BogoMIPS: 4700.00

L1d cache: 32K

Empirical Study of the UGSort Algorithm 5

L1i cache: 32K

L2 cache: 512K

L3 cache: 16384K

Memory: 7820

gcc version: 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC)

cmake version 2.8.12.2

Compilation: -std=c++11 –O2 -Wall

Test Data

Testing uses files that have been prepared for individual studies. The default test set

comprises files of text records with a randomly generated 20 numeric character key at the

start of each record, padded with random and serial data to an average record length of 61

bytes, the files contain 250,000 to 5,000,000 records at 250,000 intervals.

Best-case test files are created from the random test files by sorting them on the test

key into descending sequence. Worst-case test datasets are prepared by taking the

corresponding best-case file and emitting it in alternating tail and top sequence.

STUDIES

All timing measurements (t) are given in milliseconds (ms) unless explicitly stated.

Key counts (n) are given in millions of keys. The following sections describe each of the

common timings that may be recorded in results tables.

1. T_LD – The time taken to load the test data into memory.

2. T_SI – The time taken to complete the partitioning of the input data into the array of

double ended queues. This time excludes any time spent performing pre-emptive

merges.

3. T_PM – The time taken performing pre-emptive merges during the sort input phase.

Empirical Study of the UGSort Algorithm 6

4. CSI – The cumulative time spent in the sort input phase i.e., T_SI + T_PM.

5. T_FM – the time spent in performing the final merge, resulting in the keys being in a

single double ended queue.

6. CM – The cumulative merge time i.e., T_PM + T_FM.

7. T_SO – The time spent iterating the result queue and building the output buffer with

the input data in the desired sequence.

8. T_SD – The time spent writing the output buffer to disk.

9. T_S – The total sort time excluding loading the input data and storing the output data.

10. RT – The total runtime of the test application, this is measured external to the

application.

Figure 1. Timing Diagram

All tests are performed using the in-memory (fastest) mode of operation.

Empirical Study of the UGSort Algorithm 7

1. 64bit (x64) vs. 32bit (x86)

This study will compare the performance of 64-bit and 32-bit applications using a

5,000,000 random test dataset.

Windows Results.

Table 1. x64 vs x86 timing comparison on Widows

Arch T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

x64 59.0 1076.4 235.6 1312.0 1884.0 258.6 222.0 3458.4 3794

x86 58.3 942.6 234.9 1177.4 1710.3 357.7 222.6 3250.4 3591

Linux Results.

Table 2. x64 vs x86 timing comparison on Linux

Arch T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

x64 82.0 2104.9 435.7 2540.6 3707.6 857.6 105.7 7107.0 7353

x86 86.7 2256.7 415.3 2672.0 3570.0 928.6 99.1 7171.9 7416

Observations and Analysis

As expected, the Linux timings are much slower than the Windows timings as the test

platform for Linux is less powerful than the Windows test platform. Subsequent studies will

use the x64 (64 bit) test application.

Empirical Study of the UGSort Algorithm 8

2. Random Keys

This study will examine the relationship between the number of keys sorted (n) and

the sort time. Tests will examine the performance on a range of random input files from

250,000 keys up to 5,000,000 keys in 250,000 increments. The release x64 build v1.15.0 of

the UGSort application is used for all tests.

Windows Results.

Table 3. timing comparisons for different n on Windows

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 3.0 32.9 4.0 36.9 57.4 9.4 4.0 110.4 138

0.50 5 70.3 10.9 81.1 135.1 21.6 14.6 244.3 287

0.75 8.0 108.4 25.7 134.1 212.9 34.7 32.1 389.0 454

1.00 11.0 150.4 53.4 203.9 277.0 47.0 43.1 536.1 617

1.25 14.3 203.6 60.0 263.6 386.7 60.6 52.7 716.1 811

1.50 17.1 251.7 55.7 307.4 497.9 74.4 66.7 888.0 1002

1.75 20.1 301.6 62.4 364.0 597.3 87.7 75.6 1057.1 1185

2.00 22.9 345.1 105.0 450.1 638.9 99.9 87.6 1195.0 1339

2.25 26.0 407.3 121.3 528.6 774.9 114.4 98.4 1426.6 1587

2.50 29.0 461.6 126.7 588.3 871.1 127.3 113.0 1593.0 1773

2.75 32.0 515.7 121.9 637.6 981.7 137.9 122.3 1764.3 1958

3.00 34.1 573.7 107.4 681.1 1086.1 151.9 134.4 1927.1 2137

3.25 37.9 633.1 128.9 762.0 1187.6 167.7 148.0 2124.3 2355

3.50 41.3 707.3 240.0 947.3 1172.4 181.6 160.9 2310.3 2557

3.75 44.9 768.7 133.6 902.3 1399.0 193.1 171.6 2501.0 2764

4.00 46.3 818.6 222.3 1040.9 1456.3 205.9 180.7 2709.4 2984

4.25 51.1 901.0 228.1 1129.1 1636.9 236.0 186.1 3010.7 3294

4.50 53.1 989.0 243.4 1232.4 1755.6 245.1 200.0 3240.9 3543

4.75 55.3 1015.7 263.1 1278.9 1758.1 240.9 213.7 3285.6 3606

5.00 56.7 1063.7 231.7 1295.4 1882.4 255.1 222.1 3440.4 3772

Empirical Study of the UGSort Algorithm 9

Linux Results.

Table 4. timing comparisons for different n on Linux

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 4.0 63.4 8.3 71.7 106.0 31.6 5.1 210.6 227

0.50 9.0 135.7 18.1 153.9 234.3 66.3 10.3 455.4 484

0.75 12.3 212.0 40.3 252.3 364.1 100.3 15.4 717.6 757

1.00 12.7 301.3 89.4 390.7 509.0 137.9 20.4 1039.0 1087

1.25 18.4 386.1 99.9 486.0 683.9 178.1 25.4 1349.1 1409

1.50 20.6 469.0 92.6 561.6 846.6 211.7 29.4 1620.9 1687

1.75 24.7 565.7 105.1 670.9 1030.1 249.6 34.1 1951.7 2028

2.00 23.9 657.4 181.0 838.4 1118.4 284.4 37.7 2242.6 2323

2.25 29.1 753.1 203.9 957.0 1347.3 329.6 44.1 2634.7 2729

2.50 32.1 854.1 213.4 1067.6 1503.9 362.0 47.9 2934.7 3039

2.75 37.6 961.0 215.4 1176.4 1733.7 410.0 54.0 3321.4 3438

3.00 33.6 1071.7 184.6 1256.3 1865.1 443.6 56.6 3566.3 3685

3.25 38.3 1190.4 214.9 1405.3 2022.3 470.4 62.9 3899.3 4030

3.50 45.9 1316.4 403.4 1719.9 2047.0 528.6 72.3 4301.4 4452

3.75 47.7 1462.1 224.0 1686.1 2424.4 565.4 73.7 4676.9 4834

4.00 47.7 1532.9 374.9 1907.7 2554.4 601.6 78.3 5064.9 5230

4.25 61.4 1654.6 368.6 2023.1 2667.9 640.3 85.1 5335.4 5526

4.50 61.0 1778.1 399.4 2177.6 2919.6 680.3 89.6 5778.7 5976

4.75 68.3 1898.4 441.0 2339.4 3024.4 711.1 93.4 6076.1 6286

5.00 63.4 2051.4 392.7 2444.1 3230.9 745.6 97.6 6421.7 6635

Empirical Study of the UGSort Algorithm 10

Observations and Analysis

A linear regression on the sort time (t) in milliseconds gave the following

relationships with n as the number of millions of input keys.

t = mn + c

Where m is the slope and c the intercept.

For Windows m = 726 and c = -183, with R2 = 0.9991.

For Linux m = 1,328 and c = -307, with R2 = 0.9995.

The approximate throughput rates for Windows and Linux were respectively

1,500,000 and 800,000 keys per second.

Figure 2. best fit plots for t vs. n on Windows

Empirical Study of the UGSort Algorithm 11

Figure 3. best fit plots for t vs. n on Linux

The plots show a typical logarithmic or sigmoidal deviation from the linear

approximation. Sort algorithms based on merge typically show time complexity of nLog2(n),

therefore a best match was attempted on that basis, no match was possible.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((t1-t2)/(1+e((n-n0)/dn))) + t2

Where t1 is the initial value of t, t2 the final value, n0 is the mid-value of n and

dn is the time constant.

For Windows t1 = -1,760, t2 = 6,750, n0 = 3.69 and dn = 2.72

matches with R2 = 0.9996.

For Linux t1 = -4,734, t2 = 15,200, n0 = 4.2 and dn = 3.5

matches with R2 = 0.9999.

For both Windows and Linux, the linear estimations for the sort time are as

accurate as needed for run time estimations over the range being studied.

Empirical Study of the UGSort Algorithm 12

3. Best-Case

This study will examine the performance profile for "best-case” sample data. The data

is constructed by pre-sorting the random samples into descending sequence. The release x64

build v1.15.0 of the UGSort application is used for all tests.

Windows Results.

Table 5. timing comparisons for different n on Windows

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 2.3 5.0 0.0 5.0 0.0 3.1 4.0 11.9 41

0.50 5 13.4 0.0 13.4 0.0 7.0 14.7 26.3 69

0.75 8.0 24.1 0.0 24.1 0.0 11.0 25.4 42.4 100

1.00 11.0 39.3 0.0 39.3 0.0 14.1 36.9 60.6 135

1.25 14.3 59.1 0.0 59.1 0.0 18.9 49.1 85.0 177

1.50 17.0 78.1 0.0 78.1 0.0 22.0 60.3 106.4 213

1.75 20.0 103.4 0.0 103.4 0.0 25.3 71.6 136.7 259

2.00 23.0 133.6 0.0 133.6 0.0 29.9 81.3 171.0 307

2.25 26.1 165.9 0.0 165.9 0.0 33.6 95.4 203.9 360

2.50 29.0 203.0 0.0 203.0 0.0 37.6 106.9 243.7 419

2.75 32.0 233.0 0.0 233.0 0.0 41.0 117.0 278.7 467

3.00 34.6 278.3 0.0 278.3 0.0 45.3 127.3 330.4 533

3.25 37.9 324.4 0.0 324.4 0.0 47.9 141.7 375.1 597

3.50 40.6 376.4 0.0 376.4 0.0 52.0 153.4 432.6 670

3.75 43.9 431.3 0.0 431.3 0.0 59.1 169.1 494.3 752

4.00 45.7 492.1 0.0 492.1 0.0 58.6 177.7 555.6 826

4.25 49.9 548.6 0.0 548.6 0.0 62.9 186.7 607.7 895

4.50 52.4 608.3 0.0 608.3 0.0 68.1 199.9 679.4 983

4.75 54.7 675.7 0.0 675.7 0.0 71.7 219.6 753.3 1082

5.00 57.4 753.6 0.0 753.6 0.0 82.3 224.1 842.7 1178

Empirical Study of the UGSort Algorithm 13

Linux Results

Table 6. timing comparisons for different n on Linux

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 3.3 7.1 0.0 7.1 0.0 6.0 4.7 14.0 28

0.50 6.9 15.6 0.0 15.6 0.0 11.4 10.3 27.6 53

0.75 9.6 25.1 0.0 25.1 0.0 16.0 14.7 42.0 76

1.00 12.1 37.4 0.0 37.4 0.0 21.0 19.4 59.1 102

1.25 15.6 50.0 0.0 50.0 0.0 29.1 24.9 79.6 134

1.50 17.4 60.9 0.0 60.9 0.0 35.7 29.4 97.4 159

1.75 20.4 75.6 0.0 75.6 0.0 42.1 34.4 118.4 189

2.00 22.4 92.6 0.0 92.6 0.0 48.7 38.7 141.9 222

2.25 26.0 110.4 0.0 110.4 0.0 53.7 44.7 164.7 257

2.50 30.6 126.7 0.0 126.7 0.0 59.3 49.7 186.7 289

2.75 33.0 145.1 0.0 145.1 0.0 69.9 54.1 215.3 329

3.00 36.6 167.7 0.0 167.7 0.0 80.6 57.7 248.9 373

3.25 41.0 190.9 0.0 190.9 0.0 91.6 64.9 282.9 424

3.50 45.1 216.1 0.0 216.1 0.0 103.3 69.9 320.0 475

3.75 50.6 236.1 0.0 236.1 0.0 113.4 73.3 350.1 515

4.00 51.7 267.1 0.0 267.1 0.0 121.6 76.3 389.4 561

4.25 56.4 291.3 0.0 291.3 0.0 134.6 83.0 426.7 615

4.50 59.6 313.6 0.0 313.6 0.0 141.6 89.7 455.9 652

4.75 59.0 347.6 0.0 347.6 0.0 146.1 93.0 494.3 696

5.00 59.9 381.9 0.0 381.9 0.0 153.9 95.9 536.6 744

Empirical Study of the UGSort Algorithm 14

Observations and Analysis

The first observation is that despite running on the less powerful platform the Linux

tests bettered the Windows tests for all values of n. The best-case data sets do not require any

merging as the data is pre-sorted and therefore is loaded to only a single partition, thus,

T_PM and T_FM are 0 in all tests.

A linear regression on the sort time (t) in milliseconds gave the following

relationships with n as the number of millions of input keys.

t = mn + c

Where m is the slope and c the intercept.

For Windows m = 171 and c = -128, with R2 = 0.983.

For Linux m = 111 and c = -59, with R2 = 0.993.

The approximate throughput rates for Windows and Linux were respectively

6,000,000 and 9,000,000 keys per second.

Figure 4. best fit plots for t vs. n on Windows

Empirical Study of the UGSort Algorithm 15

Figure 5. best fit plots for t vs. n on Linux

The plots show a typical logarithmic or sigmoidal deviation from the linear approximation.

Sort algorithms based on merge typically show time complexity of nLog2(n), therefore a best

match is done on that basis.

t = mnLog2(kn)

Where m is the scale and k a constant.

For Windows m = 54 and k = 1.5, with R2 = 0.9965.

For Linux m = 24.6 and k = 3.8, with R2 = 0.9989.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((t1-t2)/(1+e((n-n0)/dn))) + t2

Where t1 is the initial value of t, t2 the final value, n0 is the mid-value of n and

dn is the time constant.

For Windows t1 = -118, t2 = 2,628, n0 = 6.26 and dn = 2.0

Empirical Study of the UGSort Algorithm 16

matches with R2 = 0.9999.

For Linux t1 = -88, t2 = 1,044, n0 = 4.6 and dn = 1.9

matches with R2 = 0.9999.

For both Windows and Linux, the linear estimations for the sort time are as

accurate as needed for run time estimations over the range being studied.

Empirical Study of the UGSort Algorithm 17

4. Worst-Case

This study will examine the performance profile for "worst-case” sample data. Worst-

case test datasets are prepared by taking the corresponding best-case file and emitting it in

alternating tail and top sequence. The release x64 build v1.15.0 of the UGSort application is

used for all tests.

Windows Results.

Table 5. timing comparisons for different n on Windows

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 2.3 372.6 90.4 463.0 10.0 3.0 4.0 483.6 511

0.50 5 573.1 526.9 1100.0 23.9 7.3 14.9 1140.4 1184

0.75 8.0 745.7 1165.6 1911.3 35.1 12.0 27.6 1962.3 2023

1.00 11.0 891.3 1933.9 2825.1 51.0 15.7 38.9 2898.9 2976

1.25 14.1 1040.1 2893.0 3933.1 84.4 19.6 49.7 4044.4 4137

1.50 17.1 1154.7 3921.0 5075.7 88.0 26.6 61.9 5196.0 5306

1.75 20.0 1251.1 5082.1 6333.3 81.7 27.6 72.1 6448.9 6573

2.00 23.0 1390.7 6223.3 7614.0 102.9 31.6 82.9 7756.4 7897

2.25 26.0 1486.1 7570.4 9056.6 131.1 36.1 100.1 9229.7 9393

2.50 36.9 1617.1 8929.0 10546.1 129.7 43.0 113.3 10725.9 10914

2.75 40.3 1700.0 10381.0 12081.0 143.4 44.4 124.0 12276.3 12482

3.00 35.0 1811.9 11825.7 13637.6 164.7 52.7 135.3 13863.0 14075

3.25 39.4 1914.7 13465.6 15380.3 181.1 55.6 149.9 15626.3 15859

3.50 41.1 2009.6 15082.4 17092.0 217.9 61.7 168.3 17380.7 17635

3.75 44.0 2082.6 16890.4 18973.0 213.4 64.7 177.3 19258.4 19529

4.00 46.4 2182.7 18521.4 20704.1 231.4 63.4 191.9 21008.1 21296

4.25 49.0 2284.4 20409.0 22693.4 251.0 68.4 207.4 23019.9 23324

4.50 52.1 2391.1 22350.1 24741.3 304.3 79.1 213.4 25133.7 25449

4.75 70.9 2472.3 24364.9 26837.1 303.4 84.0 225.0 27233.9 27581

5.00 57.0 2547.3 25968.6 28515.9 287.4 79.6 228.3 28890.9 29230

Empirical Study of the UGSort Algorithm 18

Linux Results.

Table 6. timing comparisons for different n on Linux

n (M) T_LD T_SI T_PM CSI T_FM T_SO T_SD T_S RT

0.25 4.0 309.3 397.0 706.3 23.4 6.9 5.1 737.4 754

0.50 7.9 521.0 1296.4 1817.4 45.7 12.3 10.1 1876.6 1903

0.75 11.3 711.4 2351.0 3062.4 62.1 18.1 14.9 3143.9 3180

1.00 14.9 870.1 3617.9 4488.0 87.1 22.9 19.9 4598.7 4645

1.25 18.1 1041.3 5153.7 6195.0 110.0 31.9 26.0 6338.0 6395

1.50 18.4 1180.7 6709.3 7890.0 129.6 38.4 30.4 8059.1 8123

1.75 20.1 1325.1 8730.1 10055.3 139.0 44.9 35.0 10240.6 10312

2.00 27.6 1450.1 10138.9 11589.0 168.9 53.0 38.7 11812.3 11896

2.25 28.9 1588.7 12436.9 14025.6 189.6 56.4 46.4 14272.7 14369

2.50 34.9 1739.0 14503.0 16242.0 210.3 74.3 50.6 16527.6 16638

2.75 38.1 1863.4 16802.0 18665.4 227.7 92.4 55.6 18986.7 19107

3.00 42.9 1985.9 18785.0 20770.9 243.9 111.4 59.1 21127.4 21258

3.25 43.4 2090.9 21168.6 23259.4 266.0 120.9 64.6 23647.6 23788

3.50 46.0 2237.3 23993.0 26230.3 334.7 134.7 70.7 26700.9 26852

3.75 52.1 2361.9 27373.3 29735.1 396.4 145.3 73.7 30278.0 30444

4.00 47.3 2463.6 29002.3 31465.9 337.4 157.1 78.3 31961.9 32127

4.25 58.6 2577.3 31882.0 34459.3 394.9 168.3 88.0 35023.4 35216

4.50 67.4 2686.7 34733.0 37419.7 413.1 172.1 97.1 38006.1 38216

4.75 71.0 2821.7 37768.4 40590.1 407.7 189.9 100.4 41189.1 41414

5.00 81.3 2933.6 39885.6 42819.1 417.7 192.0 98.6 43430.0 43658

Observations and Analysis

A linear regression on the sort time (t) in milliseconds gave the following

relationships with n as the number of millions of input keys.

t = mn + c

Where m is the slope and c the intercept.

For Windows m = 6,126 and c = -3,402, with R2 = 0.995.

For Linux m = 9,255 and c = -4,896, with R2 = 0.9957.

The approximate throughput rates for Windows and Linux were respectively 250,000

and 150,000 keys per second.

Empirical Study of the UGSort Algorithm 19

Figure 6. best fit plots for t vs. n on Windows

Figure 7. best fit plots for t vs. n on Linux

Empirical Study of the UGSort Algorithm 20

The plots show a typical logarithmic or sigmoidal deviation from the linear

approximation. Sort algorithms based on merge typically show time complexity of nLog2(n),

therefore a best match is done on that basis.

t = mnLog2(kn)

Where m is the scale and k a constant.

For Windows m = 1,351 and k = 3.8, with R2 = 0.9996.

For Linux m = 1,931 and k = 4.5, with R2 = 0.9996.

The chart also includes a plot of the best fit for a Boltzmann Sigmoidal curve.

t = ((t1-t2)/(1+e((n-n0)/dn))) + t2

Where t1 is the initial value of t, t2 the final value, n0 is the mid-value of n and

dn is the time constant.

For Windows t1 = -7,179, t2 = 60,347, n0 = 4.69 and dn = 2.14

matches with R2 = 0.9999.

For Linux t1 = -9,804, t2 = 80,014, n0 = 4.24 and dn = 1.97

matches with R2 = 0.9998.

Empirical Study of the UGSort Algorithm 21

5. Comparison with native OS Sort Utilities

This study compares the run time (RT) of different test sets (random, best-case and

worst-case) of UGSort with the Sort utility provided with the OS. In each case the tests are

run for the complete range of n (250,000 to 5,000,000) keys. Run times for the Sort utilities

are measured using the time command on Linux and the Measure-Command PowerShell

command on Windows.

Linux:> time sort input file >output file

Windows:> Measure-Command {sort.exe input file /O output file}

Windows Results.

Table 7. timing comparisons for different n on Windows

n (M) Sort

Rand

UGSort

Rand

Sort
Best

UGSort

Best

Sort

Worst

UGSort

Worst

0.25 481 138 325 41 394 511

0.50 1061 287 665 69 868 1184

0.75 1696 454 994 100 1310 2023

1.00 2357 617 1374 135 1882 2976

1.25 3069 811 1737 177 2324 4137

1.50 3773 1002 2086 213 2994 5306

1.75 4581 1185 2489 259 3406 6573

2.00 5200 1339 2878 307 4078 7897

2.25 6162 1587 3310 360 4525 9393

2.50 6956 1773 3617 419 5160 10914

2.75 7566 1958 3931 467 5570 12482

3.00 8267 2137 4329 533 6322 14075

3.25 9086 2355 4729 597 6675 15859

3.50 9986 2557 5129 670 7474 17635

3.75 10581 2764 5541 752 7646 19529

4.00 11264 2984 5962 826 8671 21296

4.25 12374 3294 6415 895 8865 23324

4.50 13069 3543 6827 983 9729 25449

4.75 13893 3606 7249 1082 10016 27581

5.00 14784 3772 7488 1178 10898 29230

Empirical Study of the UGSort Algorithm 22

Linux Results.

Table 8. timing comparisons for different n on Linux

n (M) Sort

Rand

UGSort

Rand

Sort
Best

UGSort

Best

Sort

Worst

UGSort

Worst

0.25 468 227 239 28 298 754

0.50 685 484 304 53 371 1903

0.75 1072 757 467 76 570 3180

1.00 1457 1087 624 102 750 4645

1.25 1876 1409 803 134 959 6395

1.50 2356 1687 1024 159 1229 8123

1.75 2839 2028 1238 189 1456 10312

2.00 3304 2323 1435 222 1753 11896

2.25 3797 2729 1685 257 2011 14369

2.50 4239 3039 1871 289 2202 16638

2.75 4732 3438 2148 329 2465 19107

3.00 5144 3685 2325 373 2738 21258

3.25 5619 4030 2535 424 2983 23788

3.50 6111 4452 2730 475 3234 26852

3.75 6636 4834 2907 515 3451 30444

4.00 7207 5230 3218 561 3763 32127

4.25 7519 5526 3383 615 3963 35216

4.50 8211 5976 3560 652 4269 38216

4.75 8484 6286 3850 696 4516 41414

5.00 9261 6635 4055 744 4697 43658

Empirical Study of the UGSort Algorithm 23

Observations and Analysis

Figure 8. comparison plots for random key sequence

UGSort performed well on both Windows and Linux, outperforming the

native Sort utilities by a significant margin.

Figure 9. comparison plots for best-case key sequence

Empirical Study of the UGSort Algorithm 24

The UGSort implementations on both Windows and Linux outperformed the

native Sort utilities. The algorithm is well suited to exploiting the presortednessii

which is at a maximum in the best-case key sequence.

Figure 10. comparison plots for worst-case key sequence

UGSort on both Linux and Windows performed poorly on this sequence,

which is not surprising as the sequence was designed to be highly toxic for the

UGSort algorithm. The Sort utility on both platforms performed better than against

the random key sequence runs, they can exploit the presortedness that is inherent in

the worst-case key sequence.

Empirical Study of the UGSort Algorithm 25

CONCLUSION

The UGSort application performed well on both platforms, giving a near linear

performance curve for random key sequences. Given that the application under test is

only minimally optimised the performance is encouraging although, the Linux

implementation did not perform as well as the Windows one. The performance on

both platforms was outstanding for the best-case test sets, performing far better than

the native Sort utilities. As expected, the worst-case test sets managed to significantly

impair the performance of UGSort in comparison to the native Sort utilities.

The UGSort algorithm offers a predictable and acceptable performance cost

over the range that was studied (250,000 to 5,000,000 keys).

The implementation of the binary search for partition selection has

significantly improved the algorithm, reducing sort input times and the number of pre-

emptive merges that are needed to maintain the performance.

FURTHER WORK

A theoretical study of the UGSort algorithm would underpin this study. The observed

O(n) time complexity observed in the random key sequence tests should be explained. Such a

study should resolve a relationship between sorting times and the degree of presortedness or

sequence spoiling noted in the best and worst-case test sets.

REFERENCES

i The UGSort Algorithm, Tree Ian. J, 2023

https://github.com/UGSort-/docs/UGS-Algorithm.pdf
ii Sorting Presorted Files, Mehlhorn K, 1978

